Vehicular Ad hoc Network and Its Challenges

Overview

- Motivation of VANET
- Current DSRC/WAVE Technology
- Research and Technical Challenges

Disclaimer: This presentation only represents the panelist's personal opinion from a researcher's perspective.

When Two New Worlds Encounter

Key: Integrate information gathering, aggregation, sharing, processing and entity control/action into a single paradigm

Vehicular Ad Hoc Network (VANET)

Vehicle-to-Vehicle (v2v)

Vehicle-to-Infrastructure (v2i)

Vehicle-to-Portable (v2p)

Vehicular Sensor Network

.

Vehicles (and their information) are an important component of ubiquitous computing platform.

Today, this part has been ignored in the existing equation of Internet architecture

Application-Driven Technology Development

Two Perspectives to Classify VANET Applications

Ubiquitous Computing, Communication and Control

- Single ubiquitous computing/communication/control platform providing information sensing, gathering, aggregation, sharing, processing and action control in the real-world environment
 - (1) Sensing; (2) Information Sharing and Processing; (3) Control

DSRC/WAVE Protocol Stack (Standards)

DSRC Standard Stack: Since early stage, DSRC/WAVE technology development has been closely coupled with industry standard development

DSRC/WAVE Technology Status: PHY/MAC

- PHY layer is a variant of OFDM-based IEEE 802.11a
 - Channel bandwidth is halved from 20MHz into 10MHz. Consequently, channel guard interval is doubled
 - In order to adapt to the severe fading with longer delay spread
- MAC is a variant of CSMA/CA without ACK
 - In order to avoid the broadcast storm of ACK caused by unreliable transmission
- Network-layer WSMP (Wave Short Message Protocol) is a variant of simplified IP protocol
 - In order to reduce the unnecessary overhead introduced by packet header, boosting system efficiency

DSRC/WAVE Status: WAVE BSS

- WBSS (WAVE BSS) is a variant of generic BSS, which is adjusted for automotive environment
 - WAVE Announcement at RSU
 - Channel selection scheme with priority consideration at OBU

DSRC/WAVE Status: Multi-Channel MAC

- To support both safety and non-safety applications simultaneously, DSRC radio device constantly switches among DSRC physical channels according to a predefined scheme
 - For the channel switching, all DSRC radio devices need to be synchronized with the external assistance (i.e., GPS)

VANET Research Challenges

- Reliability: How to improve reliability of DSRC communication and VANET system?
 - OFDM enhancement adjusted for high mobility and fading environment?
 - MAC-layer broadcast reliability compensation and transportation-layer error control?
- Efficiency: How to improve the efficiency of contention-based CSMA/CA MAC?
 - Reduce data traffic intensity (power control and rate control)?
 - CSMA/CA enhancement to reduce chaotic and organized contention?
- Scalability: How scalable is the VANET system and V2V/V2I application? How to improve it?
 - Theoretical analysis on network capacity?
 - What kind of applications (data traffic) can be supported in such a network?
 - Scalable network support for a large-scale VANET system (Hierarchical or P2P)?

VANET Research Challenges

- Flexibility/Compatibility: How to support both safety applications and nonsafety application simultaneously?
 - Multi-channel switch scheme to allow time-sharing among safety and non-safety application?
 - Generic tech solution (protocol stack) to enable various applications?
 - Magic common interface to glue all protocols across layers together?
- Adaptability: How to adapt to various underlying environments?
 - How to adapt to various fading/propagation environments?
 - How to adapt to different kinds of network topology?
- Security: How to protect the wireless security and driver's privacy?
 - Enhanced security mechanisms to protect both safety and non-safety applications?
 - Privacy solution providing anonymity and untraceability?

Research Theme of VANET?

- Many open issues need to be answered and analyzed
 - Identification of a single research theme might help to focus our research effort

Research Theme of VANET?

dg8

Challenges on Economics Incentive

Catch-22: Market Penetration vs. Value Proposition

- VANET's value to customers is not obvious until widely deployed
- VANET is not widely sought unless performance of VANET system is good
- Potential Solutions
 - "Killer applications" demonstrating values even with low market penetration phase
 - Infrastructure-assisted VANET system also helps to populate market penetration

Challenges on Technology Evolvement

Catch-22: Standard vs. Technology Maturity

- Early adoption of standard facilitates the wide deployment of VANET
- The compatibility between existing technology/standard and the new technology/standard is an issue, since car's lifetime is about 10-15 years

Potential Solutions

- Carefully defined standard evolvement strategy to enable back/future compatibility
- Module-oriented design philosophy in system engineering

Summary

- Telecommunication/wireless/networking society and automotive society both offer revolutionary opportunity toward each other
- Eventually, a generic framework can be formed to guide the development of both technology and application, by integrating various perspectives

